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Abstract
We investigate if and how magnetic sensors can be used

to replace gyroscopes in wearable activity recognition. The
work is motivated by (1) sensor configurations typically
found in smart phones where magnetic sensors are used
to complement GPS position with orientation and (2) the
fact that gyroscopes are an important source of information
for activity recognition. We propose a method to compute
angular velocity from 3D magnetic sensor data and discuss
its fundamental limitations. We present an elaborate eval-
uation of the accuracy on 5 previously published data set
with a total of nearly 20 hours of data from 15 users with
activities ranging from bicycle repair, through homemaking
to gym exercise.

1. Introduction

After accelerometers, gyroscopes are the second most
popular type of wearable motion sensors. To a degree both
sensor types provide similar information. However, there
are some significant differences. The accelerometer signal
reflects a mixture of earth gravity, change in linear motion
speed (linear acceleration) and forces related to rotational
motions (centripetal acceleration, Coriolis acceleration). The
gyroscope, on the other hand, is insensitive to gravity
and linear acceleration, providing information about angular
velocity only. In general, accelerometers tend to be more
useful when complex motions or motion sequences need to
be recognized with a single sensor type, since their signal
contains information that the gyroscope misses entirely.
This comes at the price of ambiguity since the different
contributions to the signal can not be separated. Gyroscope
are more appropriate whenever exact, non ambiguous in-
formation related to rotational motions is relevant. Thus,
they are for example extensively used in gait analysis (limb
motion is essentially a rotation around the corresponding
joint). It has been repeatedly demonstrated that a combi-
nation of accelerometers and gyroscopes can lead to better
system performance than each sensor on its own [10]. In
previous work, we have also shown that a combination of
an accelerometer and gyroscope is well suited to compensate
for sensor displacement effects [7]. Displacement means a
system is trained with a sensor at a particular body location

and tested with the sensor shifted (but remaining on the same
body part).

Our work is motivated by the observation that mobile
phones are often equipped with magnetic field sensors,
yet lack gyroscopes. On the other hand, smart phones are
increasing being used as activity recognition and motion
monitoring devices. As phones are more often loosely placed
in a pocket or back than firmly fixed to a given body location,
displacement effects can be relevant. Thus, the question
arises, if and how a magnetic field sensor can be used to
measure angular velocity and enhance activity recognition
and motion monitoring applications just like a gyroscope.
Note that this is relevant not just to compensate for a specific
sensor choice currently made in mobile phone design. Being
able to detect absolute orientation, magnetic field sensors are
valuable for many applications. Showing that at the same
time the sensor can be used as a gyroscope replacement
would allow many wearable systems to get ”two sensors for
the price of one”, saving cost, size and energy.

Paper Contributions. Magnetic sensors are mostly used
to determine orientation with respect to magnetic ”North”.
Since angular velocity can be defined as the rate of ori-
entation change with respect to a fixed point, in theory,
magnetic field sensors should be able to replace gyroscopes1.
Unfortunately, in practice, issues such as inhomogeneity of
the earth magnetic field, magnetic disturbances (e.g. due to
electrical appliances) and numerical stability issues mean
that it is not obvious if and how magnetic field sensors can
be used in place of gyroscopes. To answer this question, this
paper makes the following contributions:

1) We describe a method for deriving 3D angular velocity
information from a 3-axis magnetic field sensor.

2) We elaborate the sources of error and fundamental
limitations on the approximation of a gyroscope signal
with a magnetic field sensor.

3) We evaluate the estimation accuracy for the angular
velocity on five previously published data sets.

4) On a previously published problem we investigate
how much the accuracy differences affect activity
inference.

1. Except when the axis of rotation is parallel to the field lines, as
explained later on.



Related Work. So far, we are unaware of other work using
a 3D magnetic field sensor to estimate angular velocity for
activity recognition. Quite a number of researchers combine
gyroscopes, accelerometers and magnetic field sensors to
deduce context in a variety of situations (e.g. [8], [5], [1]).
Some work specifically deals with placement-indifferent,
more robust inferences: Blanke et. al. deduce the location
of a person using a gyro in a pocket [2], and Förster et. al.
show how to use a clustering approach to gain robustness
against displacement for motion sensor based systems [4].

2. Approach
In this section we describe an approach to estimating

angular velocity using only magnetometer data.

Magnetic Sensor Signals and Rotation. A naive notion of
a magnetic field sensor’s functionality is that, like an analog
compass, it points straight north. However, what the needle
of an analog compass really does, is to orient itself parallel
to the tangential of the magnetic field line at the specific
location. Similarly, the three field strength components that
a 3D magnetic field sensor outputs represent a vector ~B that
is tangential to the magnetic field line at sensor location. This
vector is given in the local coordinate system of the sensor
with the vector length representing the scalar field strength
(norm of the field vector at the location). Thus, if we orient
the sensor in such a way that one sensor axis (e.g. x-axis)
points in the direction of the magnetic field (is tangential
to the field line) then the sensor reading will be ~B(t) =

(b, 0, 0) with b = ‖ ~B(t)‖ being the magnetic field strength
at the location. If we orient the sensor with the (x, y) plane
being tangential to the field line than the output will be (b ∗
cos(ϕ), b∗(sin(ϕ), 0). Generalizing to arbitrary orientations
of the sensor with respect to the field line we have:2 Bi(t) =

‖ ~B(t)‖ · cos(ϕi) The angle ϕi( ~B(t)) between the i-th axis
and the magnetic field strength vector ~B(t) measured at time
t is then given by ϕi( ~B(t)) = arccos Bi(t)

‖ ~B(t)‖
where Bi(t) is

the i-th component of ~B(t).
Angular velocity then equals the first derivative of the angle:

ϕi( ~B(t))′ = −
Bi(t)

′ + Bi(t)·‖ ~B(t)‖′

‖ ~B(t)‖√
‖ ~B(t)‖2 −Bi(t)2

(1)

Since measurements happen at discrete points in time, a
continuous differential is not available. Instead, differentials
of ~B(t) and ‖ ~B(t)‖ have to be approximated by difference
quotients. One possible definition is given by taking the
average of the differences between measurements at times
(t + 1, t) and (t, t − 1), divided by the actual time that
elapsed between those measurements. If the sample rate is

2. This assumes the magnetic sensor delivers data in a standard basis
coordinate system; it is, however, possible to perform a basis transformation
if that is not the case for a given device.

completely uniform, then the difference in timestamps can
be shortened to 1

f , where f denotes the sampling frequency:

~B(t)′ =
f

2
· ( ~B(t+ 1)− ~B(t− 1)) (2)

Problems and Limits. An obvious concern is that magnetic
disturbances caused by electrical appliances and metallic
objects in the environment. Such disturbances are known
to cause significant problems whenever the magnetic field is
used to estimate orientation (e.g. for inertial navigation or
in MARG motion tracking systems). Interestingly they have
a much smaller effect on the estimation of angular velocity
from magnetic sensor signals. This is because, as described
above, the estimation does not involve absolute orientation.
Instead it relies on the orientation of the sensor with respect
to the local magnetic field lines. Thus, for the angular
speed calculation, it does not matter whether the local
magnetic field corresponds to the true earth field. However,
this assumes that the direction of the local magnetic lines
remains constant between the two field measurements that
are used to compute the angular velocity. Unfortunately, this
is not always the case. First of all, many disturbances are not
constant (e.g. fields caused by electric motors). In addition,
we have to take into account the fact that magnetic field
lines are curved. Thus, linear displacement of the sensor
(with no rotational components) can lead to a change of
the angle between the sensor and the field lines, since at
different locations the magnetic field lines point in different
directions. As long as we are dealing only with the earth
magnetic field this effect can be neglected due to extremely
small curvature of the field lines. However in the presence
of environmental fields with stronger curvatures, significant
errors can be caused by this effect.

A second source of problems stems from the fact that
rotations around an axis parallel to the field line will not
lead to a change of angle between the sensor and the field
line. Furthermore, rotations around axes that are close to
parallel to the field line will lead to small angle changes
only and are likely to produce noisy estimations.

3. Signal Level Evaluation
DataSets. The above discussion shows that the ability to
accurately estimate angular velocity from 3D magnetic field
sensors depends on a broad range of environmental factors
as well as on the types of motion that are being performed.
To better understand the practical implications for wearable
systems we have thus evaluated our computation method on
five previously published data sets that span different appli-
cation domains and activity types. Overall, the evaluation set
contains nearly 20 hours of data from 15 users and activities
ranging from bicycle repair, car inspection, homemaking,
having breakfast, video gaming, and gym exercises. All data
sets were based on XSENSE MTX inertial sensor modules
containing both a gyroscope and a magnetic field sensor.



Description Placement Citation
office and home setting, 3 subjects, 9 hours head, wrist, torso, lower leg [6]
food intake and desk work, 4 subjects, 3 hours upper arm, wrist [3]
bicycle repair 4 subjects, 3 hours upper arm, wrist [10]
opportunity project data set, 4 subjects, 5 hours upper arm, wrist, back. [9]
gym exercises, 2 subjects, 3 hours upper arm, wrist, lower leg [7]

Table 1. The data sets used for the signal level evaluation.
locomotion exercises

8 classes: walk, run, run uphill, bike, rowing, stairs, ski, crosstrain
Modality Same Trained on 1 Trained on 2

Acceleration 100 % 63% 65%
Gyro 80 % 72% 75%

Magnetic 79% 68% 71%
Gyro + Acceleration - 78% 90%

Magnetic + Acceleration - 72% 79%
gym arm exercises

8 classes: lat, pectorial, shoulder press, upper back, arm extension/curl, pull down, chest press
Modality Same Trained on 1 Trained on 2

Acceleration 97 % 24% 31%
Gyro 79 % 55% 61%

Magnetic 66% 41% 53%
Gyro + Acceleration - 74% 82%

Magnetic + Acceleration - 57% 69%

Table 2. The effectiveness of gyroscopes and magnetic
sensors in compensating sensor shift with the method [7].

The sets include a variety of different body positions such
as upper leg, arm, wrist, torso, head, back. The sampling
rates used are either 50 or 100 Hz. An overview of the sets
is given in Table 1. For details see the cited publications.

Evaluation. For the evaluation we first band-pass filter (1-
25 Hz) the magnetic field signal. Then, we calculate the
angular velocity based on the formula given in Equation 1.
As error measure we use the mean of the absolute percentage
difference between the true gyro signal and our estimation. It
is calculated over a 1.5 second sliding window. We smooth
the error to account for differences arising from temporal
jitter between the two measurements.
Results. The results are summarized in Figure 2. The vast
majority of data points have error below 20%, and there are
only few with an error of more than 40%. The mean, median
and standard deviation of the error is given by body location
of the sensor in Table 3. It can be shown that statistically
significant differences in the error distribution exist in three
distinct groups of locations: (1) the back, torso and head,
(2) upper armand lower leg, and (3) the wrist (p-values
between 0.02 and 0.04). These differences can be explained
by the way the respective body parts are moved and the
probability of coming near metallic objects (or other sources
of disturbance). The head, torso and back all move slowly,
and are less likely to come very close to objects and devices.
In contrast, errors can arise through the wrist’s frequent and
rapid displacement through motion within curved magnetic

Placement Mean Error Median Error Standard Deviation
Head 17% 11% 90%
Torso 20.1% 12.5% 110%
Back 23.5% 19.5% 150%
Wrist 53.2% 44.2% 214%

Lower leg 34% 23.4% 162%
Upper arm 32.0% 25% 173%

Table 3. Mean, median error and standard deviation for
different placements.
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Figure 1. Example traces of signal level estimation of angular
velocity using the magnetic field sensor.
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Figure 2. Cumulative distribution of errors. The x-axis gives
the percent error between true and estimated angular velocity,
and the y-axis gives the percentage of measurements with
that error or less.

field lines, as described in the previous section. Errors from
sensors on the arm and the leg lie in between.

There are also variances between data sets, however they
are not statistically significant.

4. Implications on context recognition
Clearly, deviations in the range of 20%-40% are unaccept-

able for precise tracking. However, for activity recognition
and applications that perform more qualitative analysis (e.g.
recognizing general motion types) the accuracy requirements
are less strict. To investigate to how well a magnetic field
sensor can replace a gyroscope in such systems, we consider
the gym exercise data set from [7]. We choose this data set
because it was originally used to demonstrate how adding
a gyroscope to an acceleration sensor can help compensate
for sensor displacements3 . This is an important application

3. The type of displacement considered was within body part shift. Thus,
for example a sensor originally placed close to the wrist may be shifted up
towards the elbow. Another common example would be a mobile phone in
a trousers pocket which can be anywhere from deep down on one side to
just barely in the pocket on the other side. In general, for non negligible
shifts, a motion sensor based system that was trained on one location will
perform poorly if tested on the other (see results below). In [7] we had
shown how a adding a gyroscope to an acceleration sensor based system
can make recognition more robust against such displacements. The general
idea is based on the observations that for motions dominated by translations,
the acceleration signal is actually insensitive to within body part shifts. It is
only during rotations that shifted accelerometers produce different signals.
The gyroscope signal, on the other hand, is insensitive to such shifts. In
short, we use the ratio of acceleration to rotation to determine if a motion is
translation or rotation dominated, and dynamically select either acceleration
or gyroscope features.



locomotion exercises
Modality Trained only on Gyro Trained on Gyro (normalized) Individually Trained

Gyroscope 80% 78% 80%
Magnetic 42% 71% 79%

gym arm exercises
Modality Trained only on Gyro Trained on Gyro (normalized) Individually Trained

Gyroscope 79% 68% 79%
Magnetic 15% 21% 66%

Table 4. Classification for the gym leg and arm exercises.

that is particularly relevant to mobile phones, which are often
loosely placed in pockets where they can shift around.
The Data Set. The data set consists of two groups of
exercises: leg related and arm related. For both groups
we had two test subjects each executing each locomotion
activity for around 10 min. and each arm exercise for 20-25
repetitions. Both locomotion and gym arm exercises have 8
distinct activities (Table 4). For the leg exercises the subjects
upper leg is equipped with 6 MTx Sensors: three mounted
on the front and two on the back. For the arm exercises,
there are four sensors placed on the forearm. We use the
features and classifiers described in [7].
Results. The results are summarized in Tables 2 and 4. In
Table 4 the recognition rates are compared for a gyro and a
magnetic sensor based system. We differentiate three cases.
First, the system is trained on features derived the raw gyro
signals and tested with the magnetic field sensor derived
angular velocities. This leads to a significant performance
drop (from 80% to 41% for leg and 68% to 21% for
arm exercises). Second we consider a system trained on
normalized gyro signals. Normalize in this context means to
map the gyro and magnetic field sensor values are mapped in
a value space between -1 and 1. It can be seen that the gyro
has system nearly the same accuracy (78%). At the same
time, the magnetic sensor based recognition dramatically
improves for the leg (to 71%) and somewhat improves
for the arm. Finally it can be seen that if we train the
system directly with the magnetic field derived values, the
performance is nearly identical (79%) to the gyro case for
the leg and close (66% vs. 79%) for the arm. This confirms
the suspicion that the method works much better for the
legs than for the arms, although when directly training on
the magnetic field the arms results are still reasonable.

Table shows the results of using the magnetic field sen-
sor to compensate for sensor shifts. The results for Gyro
and accelerometer are taken from [7]. For the magnetic
field we have used the same algorithms, substituting the
gyroscope signal for angular velocity values computed from
the magnetic sensor using our method. In most cases, the
magnetic sensor performs about 10% to 15% worse than
the gyro. Nonetheless, when it comes to compensating for
sensor shifts, it is still useful and achieves improvements of
up to over 100% (from 24% to 57%).

5. Conclusion
The results presented in this paper indicate that in many

cases angular velocity information derived from magnetic
field sensors can approximate and replace gyroscope signals.

Two observations are particularly noteworthy. First, the
magnetic field sensor can be used to compensate sensor
shifts using the same method that has been developed
for gyroscopes. This is particularly interesting for mobile
phone based applications where the device is loosely carried
in a pocket where it can shift around. Second, in some
recognition tasks we can feed data produced by the magnetic
sensor into a system that has been trained on gyroscope data.
This is relevant e.g. for increasing system robustness against
changing sensor configurations and sensor failures.

While our approximation method does not require the
local magnetic field to reliably point north, fast linear
motions in close proximity to strong magnetic disturbances
can lead to significant errors. As a consequence the method
works much better on the torso then on arms and wrists.

We are currently investigating whether combining an
accelerometer and magnetometer can improve the angular
velocity estimations. In particular, the estimated gravity
vector is subject to different errors (translation instead of
magnetic interference), and generally points in a different
direction than magnetic north, thereby allowing estimation
of angular velocity around the magnetic north vector.
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