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Abstract
General representation, abstraction and exchange def-
initions are crucial for dynamically configurable con-
text recognition. However, to evaluate potential defini-
tions, suitable standard datasets are needed. This paper
presents our effort to create and maintain large scale,
multimodal standard datasets for context recognition re-
search. We ourselves used these datasets in previous
research to deal with placement effects and presented
low-level sensor abstractions in motion based on-body
sensing.
Researchers, conducting novel data collections, can rely
on the toolchain and the the low-level sensor abstrac-
tions summarized in this paper. Additionally, they can
draw from our experiences developing and conducting
context recognition experiments.
Our toolchain is already a valuable rapid prototyping
tool. Still, we plan to extend it to crowd-based sensing,
enabling the general public to gather context data, learn
more about their lives and contribute to context recog-
nition research.
Applying higher level context reasoning on the gathered
context data is a obvious extension to our work.

Motivation
As of today, Context recognition systems, the core enablers
of pervasive computing, are still handcrafted for specific ap-
plication scenarios. To find the right sensors, features and
classifiers to recognize non-trivial activities, is sadly more an
art than science. Suitable context abstraction and representa-
tion formats for context would help for better re-use and self-
configuration. Yet, they are missing. To develop and evaluate
these formats, there’s the need for standardized, multimodal
context data collections and corresponding software tools to
manage them.

As a basis for discussions about context representation
formats, we present the following in this paper:
• a description and pointers to several multimodal context

datasets recorded with our toolchain for rapid prototyp-
ing.

• a short overview of our toolchain for recording, handling
and using large context data sets.
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• a placement categorization and low level sensor abstrac-
tion for motion based, on-body context recognition (eval-
uated on the datasets introduced).

• the proposal towards a crowd-sourced context data collec-
tion.

All tools introduced are open-sourced. The datasets are in
the process of being published.

Sensor-rich context data collection
Compared to the computer vision or speech recognition
fields, context recognition still lacks standardized datasets.
This makes it very difficult to compare recognition systems,
algorithms, models and the usefulness of higher level ab-
stractions. However, compared to other research disciplines
recording context recognition datasets proves to be difficult
due to the following:

Diverse Sensing Modalities – Often a multitude of differ-
ent sensors needs to be managed. One needs to deal with
the differing physical properties, sampling rate and other
peculiarities. .If the application area is relatively unex-
plored, it is difficult to determine which sensing modality
will work best.

User/Environment Augmentation – From a research per-
spective, the more and the diverse the sensors are that are
used in a setup the better. On the other hand, the more
sensors the more complex the recordings and the more
burden is on the user.

Synchronization – Of course, the sensor streams also need
to be synchronized. Activity class assignments get espe-
cially tricky if the sensing devices do not supply a steady
sampling rate.

Broad Application Scenarios – The user’s ”Context” a sys-
tem is to recognize depends highly on a given application
scenario. As there are wide application areas for perva-
sive computing technology, it is not feasible to provide a
dataset for every use case.

To tackle a part of these problems and manage the com-
plexity of the recordings better, we developed an integrated
toolchain for development, testing and deployment of con-
text recognition systems.
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Figure 1: Experimental Setup for the ”Everyday living” dataset. On the left, the on-body sensing setup is shown. The picture
in the middle depicts the sensors in the environment. On the right, you see a part of the hierarchical activities performed by the
test subjects. The experiments were recorded for the Opportunity EU Project. (Roggen, Calatroni, and Rossi 2010)

Toolchain for recording, post-processing and online
classification
The toolchain is composed of three parts, as depicted in
fig. 3. The first part deals with data collection. We can mon-
itor all sensors, detect failures and signal degradation dur-
ing this part. After collection, the datasets are stored in a
database (an Apache CouchDB in our case). In the data man-
agement and annotation step, sensor signals can be plotted,
labelled and arranged (channel synchronizations can be ad-
justed using offsets etc.). Training data traces can be gener-
ated in this step. These traces are then used to train machine
learning classifiers and enable online context classification
in the last step of our toolchain (Bannach and Lukowicz
2011). Core components are explained subsequently:

Context Recognition Network Toolbox (CRNT) – The
CRN Toolbox allows for a fast implementation of context
recognition systems. It can be also used for synchronized
recordings of data streams. It comes with software com-
ponents provinding a broad range of online signal pro-
cessing filters and machine learning algorithm. It supports
a broad range of mobile and wearable devices.

MASS (Monitoring Application for Sensor Systems) –
MASS helps to monitor experiments. It features graphi-
cal and tabular views for visualizing sensor up-times and
dynamic plots of live sensor signals for quick checking of
signal quality.

Labelling Tool– This tool enables us to review and syn-
chronize different sensor streams. We can also assign la-
bels to given sensor signal regions and export data for
training classifiers.

Fig. 2 shows some of the software tools used during the
three part process.

Available datasets
Even though we developed this context recognition software
stack, recording a dataset is still a lot of work. With present-
ing some of the datasets we recorded we show the usefulness
of our software stack and give other researchers the possibil-
ity to utilize our already recorded data for their hypotheses.

In the following, we introduce four larger datasets recorded
by collaborating researchers and our group utilizing our in-
tegrated toolchain:
Everyday living – This is by far the largest data set. It was

recorded as part of the Opportunity EU Project. The ac-
tivities are from everyday living and include ”making a
sandwich”, ”pouring coffee”, ”eating” etc. 12 users re-
peated the setup 5 times each with a total of 72 sen-
sors (in the environment, on the body and on objects), 10
modalities and 25 hours of data (Roggen, Calatroni, and
Rossi 2010). Part of the data is already published under
http://www.opportunity-project.eu/challenge/.

Drink and Work –This data set contains mostly sitting ac-
tivities, working on a computer and taking in food and
drinks. In total it includes 6 subjects with 4 reparations
each; one experimental run is around 30-40 min. The sen-
sor setup includes motion, capacitive and force resistive
sensors on the body of the user (Cheng, Amft, and Lukow-
icz 2010).

Bicycle Repair – The experimental setup includes repair
activities on a bike (attaching a tire, opening screws etc.)
with 6 test subjects. Again motion sensors and ultrasonic
sensors on the body and in the environment were used
(see (Stiefmeier, Ogris, and Junker 2006)).

Car Maintenance – This dataset contains car maintenance
activities. 5 subjects are recorded with motion, force re-
sistive sensors, an ultra wide band positioning system and
RFID tags (Stiefmeier et al. 2008).

We are currently post-processing these datasets and are
preparing them for a public release. Interested researchers
can also contact us directly to gain early access to them.

Towards self-configuration and abstraction
Leveraging the multimodal experiments described, we could
develop a set of categorizations and low level sensor abstrac-
tions, focusing on motion based on-body sensing.

Dealing with on-body placement effects
The vast majority of context recognition research assumes
well defined, fixed sensor locations. In every day situations



Figure 2: The Context Recognition Network toolbox concept on the left shows a repository of combinable components. The
monitoring tool in the middle helps to keep track of sensor failures etc. during recordings. The labeling tool on the right helps
to assign context labels and readjust sensor data in post-processing. All software is made available as open source (Bannach
and Lukowicz 2011).

sensor placement is often dictated by practicability, usabil-
ity, and user acceptance constraints rather by the require-
ments of the recognition system. On-body device placement
may also change during deployment. To make context recog-
nition more self-configurable, we developed the following
methods (Kunze 2011):
• to detect if a device is carried on the body or placed at a

specific location in the environment (on a wooden table,
in a closed metal compartment etc.),

• to infer the coarse on-body location (on the wrist, on the
torso, ...) of a device, solely based on rotation and accel-
eration signals of the device.

• to utilize heuristics that significantly increase the robust-
ness of motion sensor-based activity recognition with re-
spect to sensor displacement.

• to detect the orientation of a device related to the users
body.

All methods have been empirically evaluated on the elab-
orate, realistic experimental setups presented above. These
inference methods can be used as a starting point for a con-
text categorization of on-body devices. After detecting its
on-body placement and orientation, a device is able to de-
cide which type of contextual inference it can provide. For
example, a device on the wrist is able to recognize specific
arm movements, whereas a device in the trousers pocket is
better to infer modes of locomotion.

Sensor abstractions
We also started to investigate low level encapsulations of
sensors based on the large scale experimental setups. For ex-
ample, angular velocity information derived from magnetic
field sensors can approximate and replace gyroscope signals
(Kunze et al. 2010; Bahle, Kunze, and Lukowicz 2010). We
showed to which extend magnetic field sensors and gyro-
scopes are interchangeable for getting angular velocity (see
fig. 5 for a signal example). This is a crucial first step to-
wards dealing with changing sensor configurations and fail-
ures.

Although abstractions on the signal level are already valu-
able, common abstractions on higher levels are crucial for a
broader adoption of context recognition. Take the concept

of location on mobile devices. The software development
kits from Android and iPhone encapsulate the complexity
for the developers. The developer does not need to choose if
he wants to use cell-tower triangulation, wifi or GPS for lo-
calization. The modality is chosen by the SDK depending on
the developer’s needs. The developer just receives location
coordinates.

We need similar encapsulations for other sensing modali-
ties. For example, a straight forward abstraction to introduce
for human motion would be a ”modes of locomotion” sen-
sor, that can recognize walking, standing etc. If this infer-
ence is achieved over a ball switch, gyro, accelerometer or
magnetic field sensor should be handled transparently.

Low level primitives, like modes of locomotion, should
be straight forward to define given the sensing modalities.
However, higher level abstraction primitives will be more
difficult, as they might depend on the application scenario,
the current circumstances or even the cultural background of
the user.

Crowdsourcing context data
In an attempt to get an idea what these higher level primi-
tives might be and to streamline context data recording, we
started to develop a version of our toolchain for non-expert
use. As a next step, we are remodeling parts of our recod-
ing and labeling tools. We provide a sensor logger for the
Android and iOS platforms available in the corresponding
application stores for everybody to download. Smartphones
today come with a multitude of sensors very similar in qual-
ity to the dedicated devices used in research. A prototype,
stripped-down version of our labeling tool already runs in a
browser (based on html and javascript) and can access the
data from the phone loggers.

Of course, we cannot hope that the toolchain, as it is
now, will directly be used by ordinary people. Although
there might be some very interested users, especially in the
quantified-self community, the average user might feel over-
whelmed and alienated by raw sensor signals. Therefore,
there are some obvious issues to discuss:

• To engage regular people to collect sensor data, we need
to provide additional value to them. This can be done in



Figure 3: Overview of the three step process of our inte-
grated toolchain (Bannach and Lukowicz 2011)

giving the users access to self-tracking information and
some rudimentary inference on their collected data.

• Some self-configuration and abstraction primitives need
to be introduced, to make handling of the tools easy and
enable usable data collections.

• The user interfaces right now are geared towards expert
users and require a steep learning curve.

• A lot of users will just have smart phones. Is it possible
to provide the complete toolchain on smart phone like de-
vices?

• We cannot expect the same precision and quality in sen-
sor data and labeling from the crowd-sourced collections.
On the other hand, there is a plentitude of additional data
sources on the phone to tap into (e.g. a lot of people use
twitter on their mobiles).

Summary
In this paper we presented our efforts towards creating stan-
dardized datasets (and tools to record them) for developing
context representations and abstractions. Extensions to our
work would include:

• The evaluation of high level context representations on
the datasets provided (e.g. testing ontology based context
models).

Is the device on the body?

no
yes

Can we determine 
its placement

in the environment?

Can we recognize the body part?

Is it displaced?Did the orientation 
change?

yes no no yes

infer orientation compensateuse as trained

Environmental 
Placement:

Active Sampling

On-body
Placement Recognition

Orientation Recognition
while walking

Heuristics 
for Displacement

Figure 4: Categorization and contributions dealing with on-
body placement effects of single sensing devices (Kunze
2011).

0 2 4 6 8 10 12 14 16 18
x 104

−4

−2

0

2

4

6

8

10

samples

Figure 5: Signal level estimation of angular velocity using
the magnetic field sensor vs. the gyroscope. To magnetic
field sensor estimation is shifted by six units to make it eas-
ier to compare the two signals.

• The use of our tools and expertise to design experiments
for evaluation of context representations.

• Collaborations to setup and maintain a crowdsourced con-
text sensing architecture and tools.
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